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A Stereocontrolled Synthesis of a C19-C32/ C17-C30 Segment
for Swinholide A and Misakinolide A,

Cytotoxic Dimeric Macrolides from Theonella Swinhoei.
Ian Paterson* and John G. Cumming
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK,

Abstract: The C19-C32 / C17-Cag segment (-)-5 of swinholide A / misakinolide A was prepared
in 15 steps (6% yield) from (1)-13. Key steps include the Sharpless epoxidation, 13 - 14, the
acetal allylation, 12 — 16, the anti aldol, 17 + 11 -» 9, and the alkene hydroboration, 19 — 20.

Swinholide A, a novel cytotoxic macrolide isolated from marine sponges of the genus Theonella
swinhoei, was first reported by Carmely and Kashman in 1985.! While originally misassigned as a monomeric
macrolide,! more recent mass spectroscopic22 and X-ray crystallographic2b-d studies showed it to be a
symmetrical dimer having the 44-membered dilactone structure 1 (Scheme 1), Several other dimeric
macrolides have also been isolated from Theonella, including the desmethyl analogues swinholides B (2) and C
(3).2¢ and the closely related 40-membered dilactone, misakinolide A (4)32< (= bistheonellide A3b4), These are
all characterised by potent cytotoxicity, e.g. swinholide A has an ICsp of 0.04 and 0.03 pg/ml against KB and
L1210 tumour cells in vitro.224 All of these marine macrolides have identical stereostructures,* determining their
conformation and possibly the cytotoxic activity.2d As part of our synthetic studies towards swinholide A and
misakinolide A, we now report the enantiocontrolled synthesis of the C19-C3p / C17-C3p segment 5.
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Scheme 2 summarises our strategy for the synthesis of the monomeric secoacid 63 for swinholide A
{together with the secoacid 7 for misakinolide A), involving aldol-type disconnections at the Cy5~C) g and Cia-
Cio bonds to afford the key segments § and 8. Segment 5, containing the Cjo—C35 stercopentad and the
tetrahydropyran ring, should then be attainable using our general synthetic approach® to such polypropionate
systems, In this case, an gnti-ansi aldol reactionS? between the ethyl ketone (5)-10¢ and the chiral aldehyde 11
is required to control the Cyp and C»3 stereocentres in 9. The aldehyde component 11 should be available in
turn from the ¢yclic acetal 12 by a suitable alkylation reaction at Cp3.
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The synthesis of this Cj9—C32 segment § starting from (E)-1,5-heptadien-4-ol (13)7 is shown in
Scheme 3 and outlined below. Catalytic Sharpless asymmetric epoxidation® of ()-13 with kinetic resolution
gave the (3,5, §) epoxide 148% (96% ee by LH NMR analysis of the Mosher ester formed from (R)-(+)-MTPA)
in 43% vield with 95% ds. Directed reductive opening of the epoxide 14 was achieved using Red-al®® giving
the 1,3-diol 18,10 [u]213°= +20.7° (¢ 2.9, CHCl3). Ozonolysis of 15 in MeOH, followed by acidic workup and
O-methylarion, then gave the cyclic acetal 12 in 70% vield as a mixture of anomers, which were not separated.
Treatment of 12 with allyltrimethylsilane in MeCN at —20 °C under Me3SiOTY catalysis! 1 led, via kinetically
controlled axial attack on the oxonium ion, to the rapid (< 2 min) and clean formation of the trans-substituted
tetrahydropyran 16,10 [¢]%) = —62.3° {c 3.8, CHCl3), in 96% yield with 297% ds. lH NMR decoupling and
NOE difference experiments on 16 confirmed the relative stereochemistry at C27 and suggested a preferred chair
cenformation with the allyl group axiaglly disposed. A similar chair conformation is found for the
tetrahydropyran containing segments of swinholide A.20d Qzonolysis of 16 then gave the corresponding
aldchyde, which underwent a stereoselective Wittig reaction!2 to give the required (E)-enal 11, [6]5 = ~5.7° (¢
1.0, CHCl3), in preparation for the forthcoming aldol chain-extension.

Using out standard conditions with equimolar amounts of the two reactants,5t the key anfi-sclective
boron aldol reaction between (§)-10 and the aldehyde 11 proceeded well, A high level of substrate-based
stereocontrol at the Czg and Cz3 cenires was achieved from the E-dicyclohexylenol borinate 17,60 giving the
anti-anti (AA) isomer 9,10 {n]%’= —18.4° (¢ 2.0, CHCl3), in 84% yield with 2 97% ds (no other aldol isomers
detected). This was followed by introduction of the Ca1 stereocentre using reduction 13 with MesBH(OAc)3 to
give the aari-1,3-diol 18, [aﬁ;‘,’: +1.7° (¢ 1.8, CHCI3), with 2 97% ds, which was converted to its di-rert-
butylsilylene derivative 19 in 72% overall yield.

The remaining stereocentre at Ca4 was installed by & hydroboration reaction on 19, again relying on
substrate-based!4 stereocontrol. Use of thexylborane gave, after oxidation. the alcohol 20, [a]3) = —45.3°



2849

(c 2.2, CHCl3), in 74% yield with >97% ds. The surplus secondary hydroxyl group at Ca5 was then efficiently
removed by reduction!5 of the derived thiocarbonylimidazolide with "Bu3SnH, as in 20 — 21 (80%). Finally,
hydrogenolysis of the benzyl ether in 21 and subsequent Swern oxidation of 22 gave the desired aldehyde §,
[a]zf,’= —75.9° (¢ 1.3, CHCl3), in 90% overall yield. The assigned structure was verified using !H NMR
(COSY, NOE).10

This completes a synthesis of a common C19—Caz / C17-C30 segment § for swinholide A and
misakinolide A (15 steps from (+)-13, in 6% overall yield and 75% diastereoselectivity), using a combination
of cyclic and acyclic stereocontrol strategies to set up seven of the eight stereogenic centres. In summary, this
relies on a single reagent-controlled reaction, the Sharpless epoxidation 13 — 14, and a series of substrate-
controlled reactions, (i) the acetal allylation, 12 — 16, (i{) the boron-mediated aldol reaction, 17 + 11 » 9,
(iif) the ketone reduction, 9 — 18, and (iv) the alkene hydroboration, 19 — 20. Studies towards the elaboration
of aldehyde § into the antitumour macrolides swinholide A and misakinolide A are underway.
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Scheme 3 (a) (+)-DIPT (15 mol %), Ti(O'Pr)4 (10 mol %), 'BuOOH (50 mol %), 4A sieves, CHyCly, -25 °C, 20 h;
Me»$. 20 °C, 16 h; (b) Red-al®, THF, 20 °C, 18 I; (c) O3, MeOH, ~20 °C, 10 min; Me5S, 20 °C; 1 M HCl(aq), 3 ; (d)
NaH, Mel, THF, 20 °C, 6 h; (¢) HyC=CHCH3SiMe3, Me3SiOTf (10 mol %), MeCN, -20 °C, 2 min; {) O3, 3:1
CH,Cly/MeOH, NaHCO3(s), —78 °C, 10 min; Mey$, 20 °C; (g) PhaP=C(Me)CHO, PhH, reflux, 18 h; (k)
(¢-CgH11)2BCL, Et3N, Ety0, 0 °C, 2 h; 11, =78 = -20 °C, 14 h; Hy02, pH7 buffer, MeOH, 0 °C, 1 h; ()
MesNBH(OAC)3, 1:1 AcOH/MeCN, ~20 °C, 19 b; () BuzSi(OTf)3, 2.6-lutidine, CHzClz, 20 °C, 17 h; (k) thexylborane,
THF, 20 °C, 3 h; HyO2/NaOH, 20°C, 1 h; (1) (imid),C=S, THF, 60 °C, 16 h; (m) "Bu3SnH, PhMe, reflux, 50 min; (r)
Ha, 10% Pd/C, EtOH, 20 °C, 5 h; (o) (COCI)z, DMSO, CHyCla, -78 °C, 1 h; Et3N, 78 — ~25 °C, 30 min.
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